热点
新内容
- · 呼伦贝尔321H耐热不锈钢厂家~利润低主打走量
- · 贵阳Y3Cr13材料可复检六面铣、抛光
- · 遂宁SB511 UNS-N08330万吨库存切割、抛光棒
- · 海南省SAE E4340H冷拉棒棒料-各地仓库可发
- · 河南省x12crnis188不锈钢##实体现货
- · 15.2无粘结钢绞线 黄石轧三边防支护钢绞线 国标1270MPA
- · 安顺批发零售AISI8622H大锻圆~~保质保量
- · 2024欢迎访问##阜阳SEC-U5F1直流电压变送器一览表
- · 2mm自粘防水卷材加工
- · 山东菏泽定陶高强抗磨料厂家
- · 铁岭DC04~~优惠客户
- · 宣化区角钢 宣化区钢材市场 宣化区钢铁市场 镀锌角钢密度
2024欢迎访问##石嘴山L-HTS500价格
发布用户:yndlkj
发布时间:2024-12-26 10:58:33
2024欢迎访问##石嘴山L-HTS500价格
湖南盈能电力科技有限公司,专业仪器仪表及自动化控制设备等。电力电子元器件、高低压电器、电力金具、电线电缆技术研发;防雷装置检测;仪器仪表,研发;消防设备及器材、通讯终端设备;通用仪器仪表、电力电子元器件、高低压电器、电力金具、建筑材料、水暖器材、压力管道及配件、工业自动化设备销;自营和各类商品及技术的进出口。
的产品、的服务、的信誉,承蒙广大客户多年来对我公司的关注、支持和参与,才铸就了湖南盈能电力科技有限公司在电力、石油、化工、铁道、冶金、公用事业等诸多领域取得的辉煌业绩,希望在今后一如既往地得到贵单位的鼎力支持,共同创更加辉煌的明天!
《GB/T1032-2012三相异步电动机试验方法》中电机效率的测试方法有A法、B法、C法、E法或E1法、F法或F1法、G法或G1法、H法,另外对于支持调速的电机,还有MAP图法,不同的试验方法适应不同的电动机,不同试验方法准确性也不一样,下面就让我们一起来看一下几种常用测试方法的区别。《GB/T1032-2012三相异步电动机试验方法》中电机效率的测试方法有A法、B法、C法、E法或E1法、F法或F1法、G法或G1法、H法,另外对于支持调速的电机,其中常用的有A法(输入-输出法)、B法(测量输入和输出功率的损耗分析法)、E法(测量输入功率的损耗分析法)。
在本文中,我们将回顾以前发布的技术,这些技术通过偏移LO频率并以数字方式补偿此偏移,强制杂散信号去相关。已知杂散去相关方法在相控阵中,用于强制杂散去相关的各种方法问世已有些时日。已知的份文献1可以追溯到2002年,该文描述了用于确保接收器杂散不相关的一种通用方法。在这种方法中,先以已知方式,修改从接收器到接收器的信号。然后,接收器的非线性分量使信号失真。在接收器输出端,将刚才在接收器中引入的修改反转。
当今,为了美化环境,热力管道直埋已经十分普遍,但是由于管道腐蚀老化、荷载震动、管道质量,施工质量,使用年限等多种原因,不可避免的会发生泄漏情况,既造成了能源浪费和供热成本的增加,又影响热用户的取暖,因此管道查漏一直困扰着供热企业。对于热力管道泄漏,传统方法很难 ,但是红外热像仪作为一种新型检测设备,能够通过扫描被测区域,观察热图像中温度分布状况,快速准确地对地下供暖管道泄漏部位进行,而FLIRE85 红外热像仪和FLIRE8红外热像仪正是这样的设备。
为了同时实现多通道和高速采集,横河SMARTDAC+系列采集器采用了各模块独立A/D的硬件设计,各模块间的数据采集并行,而主机CPU负责所有通道的数据保存和上位通信,从而可以保证5ms*1ch的系统性能。灵活的信号输入在研究和设计发领域使用的 ,需要根据实验目的记录从传感器或者从电压/电流源得到的信号。因此需要对应各种温度传感器和电压量程。可拆卸端子另外,多点测试有大量接线的工作,为了提高接线的作业效率,可以选择端子可拆卸的产品。
功能的增多也使得汽车上的电子装置数量急剧增加,各种汽车总线也应运而生。我们 熟悉的汽车总线是CAN,对于LIN和Flexray大家或许还有点陌生。那么接下来,就为大家介绍一下这三种汽车总线。汽车总线的诞生汽车总线的诞生离不汽车电子的发展。汽车电子化的程度也被看作是衡量现代汽车水平的重要标志。传统的汽车电子大多采用点对点的单一通信方式,相互之间少有,这样必然会形成庞大的布线系统。据统计,一辆采用传统布线方法的 汽车中,其导线长度可达2米,电气节点可达15个,而且该数字大约每1年就将增加1倍。
快速傅立叶(FFT)变换是一种实现离散傅立叶变换的方法。该方法类似于离散傅立叶变换,可以将一定数量的离散采样变换至频域。示波器通常利用快速傅立叶变换的采样技术,将时域采样变换至频域。大多数现代示波器实现的传统快速傅立叶变换方法存在一个限制,尽管人们只对一部分频率范围感兴趣,FFT的计算过程是针对整个采样信息进行的。这种计算方法效率低下,使得整个过程速度较慢。数字下变频(DDC)解决了这一问题,其方法是将目标频带宽度下变频至基带并以较低采样率对其重新采样,实现了在小得多的记录长度上进行快速傅立叶变换。
传统的微功率电源模块采用自激推挽拓扑的电路,效率、容性负载、启动能力等各项性能之间的相互制约,如表1所示:启动能力与容性负载能力相互加强作用,而与电源转换效率是相互制约的,启动能力强则电源转换效率低。难以均衡、难以采用常规技术突破,导致成本高、性价比低;同时该拓扑结构电路是无异常工况保护功能,在电路出现异常工作状态时,会导致电源模块损坏,甚至导致灾难性的后果,而且行业内的微功率电源模块有如下三道难题:表1各性能相互制约表难题一:输出短路保护与输出特性市面上支持短路保护的电源主要采用两种方案,但均存在较大的缺陷:行业内比较常用的方法是利用变压器绕组分离的技术实现长期输出短路保护功能,但采用这种方式带来的后果是大大减低了产品的转换效率、纹波噪声较大并且提高了成本;采用自主磁芯专利技术实现可持续短路保护,但为避免短路时,后端重载会导致模块损坏,因此输出容性负载能力差。